Ta b

Author: q | 2025-04-24

★★★★☆ (4.9 / 2535 reviews)

paramount+ download

A comparative study on the preparation of various tantalum borides (including Ta 2 B, Ta 3 B 2, TaB, Ta 5 B 6, Ta 3 B 4, and TaB 2) in the Ta–B system was experimentally

potplayer 64 history

B ta - Album by B TA - Spotify

16 Ɗan wasan gaba na Kano Pillars, Yusuf Abdullahi, shi ne kaɗi ya ci ƙwallo sama da uku a wasa ɗaya - inda ya ci Gombe United ƙwallo biyar a wasan da suka yi nasara 5-2 An ba da jan kati sau 49 An buga canjaras a wasa 86 Gombe ce ta fi kowa ɗibar ƙwallaye, inda aka zira mata 76 jimilla An ci ƙwallaye 848 An ci finareti sau 70 kuma an ɓarar da finareti sau 20 24 Yuni 2024Ƙasashen da suka kai zagayen 'yan 16 a Euro 2024, Euro 2024Asalin hoton, ReutersKowace tawaga ta buga aƙalla wasa biyu yanzu haka a gasar kofin ƙasashen Turai ta Euro 2024, inda tuni ƙasashe huɗu suka samu gurbin kaiwa zagayen 'yan 16.Hakan na nufin akwai gurbin tawaga 12 da za a cike nan gaba kaɗan. Tawaga biyu a saman kowane rukuni ne za su kai zagaye na gaba, inda daga baya kuma za a tawagogi huɗu da suka ƙare a mataki na uku mafiya ƙoƙari. Tawagogin da suka kai zagaye na gaba zuwa yanzu su ne: Germany Portugal Switzerland Spain A yau kuma za a wasan wadda za ta bi sawun Spain ɗin tsakanin Italy da Croatia a wasan Rukunin B, yayin da Albania za ta koma gida daga rukunin. 24 Yuni 2024Euro 2024: Wasannin da za a fafata a yauYau Litinin ce rana ta 10 da fara gasar ƙasashen Turai ta Euro 2024, inda kowace tawaga ta buga aƙalla wasa biyu. A yau Rukunin B ne za su fafata a yau kamar haka: Italy (8:00) Croatia Albania (8:00) Spain 24 Yuni 2024Ƙungiyoyin da za su wakilci Najeriya a gasar zakarun AfirkaAsalin hoton, @Rangers_IntlBayan Enugu Rangers ta zama gwarzuwar gasar firimiyar Najeriya ta NPFL, yanzu kuma sai tunanin buga gasar zakaru ta nahiyar Afirka. Remo Stars ce ta biyu da kuma Enyimba ta uku. Gurbin da ake ware wa Najeriya shi ne; kulob ɗin da ya lashe firimiya zai buga Caf Champions League (CafCL) tare da wanda ya yi masa na biyu. Kulob na uku kuma zai buga CAF Confederation Cup (CafCC). Rangers za ta buga CafCL Remo za ta buga CafCL Enyimba za ta buga CafCC Ƙungoyiyin da suka faɗa ƙaramar gasar firimiyar Najeriya su ne: Sporting Lagos Doma United Heartland Gombe United Asalin hoton, NPFL24 Yuni 2024Yadda Rangers ta zama gwarzuwar firimiyar Najeriya karo na takwasAsalin hoton, NPFLA ƙarshe dai ƙungiyar ƙwallon ƙafa ta Enugu Rangers ta jinjina kofin

juju on the beat download

Thermodynamic Modeling of B-Ta and B-C-Ta Systems

And flexible string. It is whirled tension, TB is vertically upwards, i.e., towardsalong a vertical circle so that the bob performs the centre, and opposite to mg. In this case alsoa vertical circular motion and the string rotatesin a vertical plane. At any position of the bob, their resultant is the centripetal force. If vB isthere are only two forces acting on the bob: the speed at the lowermost point, we get, A TB mg mv 2 --- (1.11) B r While coming down from the uppermost to the lowermost point, the vertical displacement is 2r and the motion is governed only by gravity. Hence the corresponding decrease in the gravitational potential energy is converted into the kinetic energy. 1 1 ?mg 2r 2 mv 2 2 mv 2 B A ? v 2 v 2 4rg --- (1.12) B A Using this in the eq (1.11), and usin?g vA mminin B rg from Eq. (1.10) we get, vB min 5rg --- (1.13) Fig 1.10: Vertical circular motion. Subtracting eq (1.9) from eq (1.11) , we can(a) its weight mg, vertically downwards, which write, mv 2 v 2 --- (1.14)is constant and (b) the force due to the tension TB TA 2mg B A ralong the string, directed along the string and Using eq (1.12) and rearranging, we get,towards the centre. Its magnitude changes TB TA 6mg --- (1.15)periodically with time and location. Positions when the string is horizontal (C As the motion is non uniform, the resultant and D): Force due to the tension is the onlyof these two forces is not directed towards force towards the centre as weight mg isthe center except at the uppermost and the perpendicular to the tension. Thus, force duelowermost positions of the bob. At all the other to the tension is the centripetal force used topositions, part of the resultant is tangential and change the direction of the velocity and weightis used to change the speed. mg is used only to change the speed.Uppermost position (A): Both, weight mg and Using similar mathematics, it can be shownforce due to tension TA are downwards, i.e., thattowards the centre. In this case, their resultant TC TA TD TA 3mg and vC minis used only as the centripetal force. Thus, if v D min 3rgvA is the speed at the uppermost point, we get, Arbitrary positions: Force due to the tension 2 mg TA mv A --- (1.9) and weight are neither along the same line, r nor perpendicular. Tangential component of Radius r of the circular motion is the weight is used to change the speed. It decreaseslength of the string. For minimum possible the speed while going up and increases it whilespeed at this point (or if the motion is to be coming down. 10Remember this 1.4.2 Sphere of Death (मतृ ्‍यु गोल): This is a popular show in a circus. During1. Equation (1.15) is independent of v and r. this, two-wheeler rider (or riders) undergo2. T can never be exactly equal to

Original by TA B B TO - Zerochan

Of data and materialsThe authors confirm that the data supporting this study’s findings are available within the article and its supplementary materials.AbbreviationsINS: Insulin PHL: Phloretin UV/Vis: Ultraviolet–visible CD: Circular dichroism RTK: Tyrosine kinase receptor nm: Nanometers HCl: Hydrochloric acid Tyr: L-tyrosine DNA: Deoxyribonucleic acid NH bonds: Nitrogen–Hydrogen bonds ReferencesAlanazi MM, Almehizia AA, Bakheit AH, Alsaif NA, Alkahtani HM, Wani TA. Mechanistic interaction study of 5,6-Dichloro-2-[2-(pyridine-2-yl)ethyl]isoindoline-1,3-dione with bovine serum albumin by spectroscopic and molecular docking approaches. Saudi Pharm J. 2019;27(3):341–7. PubMed Google Scholar Al-Mehizia AA, Bakheit AH, Zargar S, Bhat MA, Asmari MM, Wani TA. Evaluation of biophysical interaction between newly synthesized pyrazoline pyridazine derivative and bovine serum albumin by spectroscopic and molecular docking studies. J Spectroscopy. 2019:1–12. NA, Al-Mehizia AA, Bakheit AH, Zargar S, Wani TA. A spectroscopic, thermodynamic and molecular docking study of the binding mechanism of dapoxetine with calf thymus DNA. S Afr J Chem. 2020a;73:44–50. CAS Google Scholar Alsaif NA, Wani TA, Bakheit AH, Zargar S. Multi-spectroscopic investigation, molecular docking and molecular dynamic simulation of competitive interactions between flavonoids (quercetin and rutin) and sorafenib for binding to human serum albumin. Int J Biol Macromol. 2020b;165(Pt B):2451–61. CAS PubMed Google Scholar Alsanea S, Gao M, Liu D. Phloretin prevents high-fat diet-induced obesity and improves metabolic homeostasis. AAPS J. 2017;19(3):797–805. CAS PubMed Google Scholar Asgharzadeh S, Shareghi B, Farhadian S. Experimental and theoretical investigations on the interaction of L-methionine molecules with α-chymotrypsin in the aqueous solution using various methods. Int J Biol Macromol. 2019;131:548–56. CAS PubMed Google Scholar Blatt E, Chatelier RC, Sawyer WH. Effects of quenching mechanism and type of quencher association on Stern-Volmer plots in compartmentalized systems. Biophys J. 1986;50(2):349–56. CAS PubMed PubMed Central Google Scholar Brown AE, Walker M. Genetics of Insulin Resistance and the Metabolic Syndrome. Curr Cardiol Rep. 2016;18(8):18(8). Google Scholar Chen J, Li Q, Ye Y, Huang Z, Ruan Z, Jin N. Phloretin as both a substrate and inhibitor of tyrosinase: inhibitory activity and mechanism. Spectrochim Acta A Mol Biomol Spectrosc. 2020;226:117642. CAS PubMed Google Scholar Chiti F, Dobson CM. Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem. 2006;75(February 2006):333–66. CAS. A comparative study on the preparation of various tantalum borides (including Ta 2 B, Ta 3 B 2, TaB, Ta 5 B 6, Ta 3 B 4, and TaB 2) in the Ta–B system was experimentally Mangaka: TA B B TO, Uploaded by Randall_Flagg on, TA B B TO, Original, Pixiv. Add to favorites. 1391 1852; 3,259kB jpg; Advertisements. Tags. TA B B TO ;

j b ta verzi s b ta tesztelők keres se

Babbar gasar firimiyar Najeriya a karo na takwas bayan doke Gombe United har gida da ci 2-1.Rangers ta samu jimillar maki 70 a gasar ta Nigeria Professional Footbal League (NPFL) kakar 2023-24, wanda hakan ke nufin ta samu tikitin zuwa gasar zakarun Afirka.An gudanar da bikin ba ta kofin ne a filin wasa na Jos International Stadium - inda Gome United ke buga wasa - bayan wasan mako na 38.Rangers ce ta fara cin ƙwallo minti uku da take wasa ta hannun Ogunleye, sannan Obaje ya ƙara minti huɗu bayan haka, kafin Hassan ya farke wa Gombe ƙwallo ɗaya a minti na 25.Asalin hoton, NPFL24 Yuni 2024Wasa mai zafi tsakanin Italiya da Croatia, Italy v CroatiaAsalin hoton, EPAMai riƙe da kofin gasar ƙasashen Turai ta Euro 2024 za ta fafata da Crotia a yau Litinin domin neman gurbin zuwa zagayen 'yan 16. Yayin da take da maki uku a rukunin B, Italiya ta fi samun damar kaiwa zagayen na gaba, sama da Croatia. Ita kuwa Croatia, za ta kammala wasannin a mataki na biyu idan ta doke Italiya kuma ta bi sawun Sifaniya, wadda ta kai zagaye na gaba a matsayin ta ɗaya a rukunin. Italiya ce ta biyu kuma za ta ƙare a matakin idan har ta guje wa rashin nasara a hannun Croatia. 24 Yuni 2024MarabaBarkanmu da sake haɗuwa a shafin labarin wasanni na kai-tsaye tare da ni Umar Mikail. Ku biyo mu domin sanin yadda take kasancewa a sassa daban-daban na duniyar wasanni, musamman gasar ƙasashen Turai ta Euro 2024.

Eigenvalue perturbation theory for $(A^TA)(B^TB)^{-1} (B^TB)(A^TA

F(M) - Hình H' = F(H) ⇔ H' = - O = F(O) ⇔ O là điểm bất động. - PBH mà mọi điểm trong mặt phẳng đều biến thành chính nó được gọi là phép đồng nhất. Kí hiệu . - (tích hai PBH bằng cách thực hiện liên tiếp PBH F rồi G )2. Phép dời hình PBH F là PDH và A' = F(A); B' = F(B) thì A'B' = AB (bảo toàn khoảng cách giữa hai điểm bất kì) PDH biến 3. Phép tịnh tiến theo , kí hiệu 4. Phép đối xứng trục (ĐXTR) d , kí hiệu Đd đối xứng nhau qua d 5. Phép đối xứng tâm (ĐXT) I , kí hiệu ĐI 6. Phép vị tự (PVT) tâm I tỉ số k , kí hiệu V(I;k) 7. Phép đồng dạng (PĐD) PĐD tỉ số k (k > 0) là PBH sao cho với hai điểm A;B bất kì và ảnh A';B' của nó ta có A'B' = kAB PĐD biến 8. Biểu thức tọa độ Giả sử M(x;y) , M(x';y') . +) PTT theo là +) Phép đối xứng tâm I(a;b) là +) Phép đối xứng trục d khi +) Phép quay tâm I(a;b) , góc α là Đặc biệt: Tâm quay là O(0;0) thì Phép vị tự tâm I(a;b) , tỉ số k là 9. Ảnh của đường thẳng d qua PTT; phép ĐXT; PQ; PVT Giả sử F: ( F ở đây là ). Lấy M(x;y) ∈ d . Giả sử F: với M'(x';y') Viết biểu thức tọa độ tương ứng với PBH đề cho ⇒ Ta có M ∈ d (thay x;y vào đường thẳng d ) ta được đường thẳng d' . 10. Ảnh của đường tròn Giả sử F: ( ở đây là ) Xác định tâm

B-Ta Binary Phase Diagram at.% Ta - SpringerMaterials

And Katakana versions of this Guide is ona HTML at this Link: Do note that the Link above would only show the English, Hiragana, and Katakanaversions of the Al Bhed. Only here would show the Roumaji. I made it easier for peopleso they won't have to encode this Guide into Japanese (Auto-Select). ^^;;=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=AL BHED TO ENGLISH: ENGLISH TO AL BHED:| A = E | B = P | C = S | D = T | - | A = Y | B = P | C = L | D = T || E = I | F = W | G = K | H = N | - | E = A | F = V | G = K | H = R || I = U | J = V | K = G | L = C | - | I = E | J = Z | K = G | L = M || M = L | N = R | O = Y | P = B | ¤ | M = S | N = H | O = U | P = B || Q = X | R = H | S = M | T = D | - | Q = X | R = N | S = C | T = D || U = O | V = F | W = Z | X = Q | - | U = I | V = J | W = F | X = Q || | Y = A | Z = J | | - | | Y = O | Z = W | |=-=-=-=-=-=-=-=-=MISCELLANEOUS INFORMATION:Alphabet [English]: ABCDEFGHIJKLMNOPQRSTUVWXYZAlphabet [Al Bhed]: YPLTAVKREZGMSHUBXNCDIJFQOWAlphabet [Misc.] : EPSTIWKNUVGCLRYBXHMDOFZQAJ-This is not the Al Bhed alphabet, this is from Al Bhed to English!=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=AL BHED TO ROUMAJI:| A = KA | I = MI | U = RU | E = RE | O = NO || KA = WA | KI = SHI | KU = FU | KE = HE | KO = MO || SA = TA | SHI = NI | SU = NU | SE = TE | SO = TO || TA = YA | CHI = KI | TSU = MU | TE = KE | TO = O || NA = RA | NI = RI | NU = SU | NE = E | NO = RO || HA = NA | HI = CHI | FU = U | HE = SE | HO = SO || MA = HA | MI = I | MU = WO | ME = NE | MO = YO

a) The typical structure model of TA. b) The FTIR spectra of TA

To introduce symbolic “geometric scenes” that have symbols representing constructs such as points, and then to define geometric objects and relations in terms of them. For example, here’s a geometric scene representing a triangle a, b, c, and a circle through a, b and c, with center o, with the constraint that o is at the midpoint of the line from a to c: &#10005GeometricScene[{a,b,c,o},{Triangle[{a,b,c}],CircleThrough[{a,b,c},o],o==Midpoint[{a,c}]}]On its own, this is just a symbolic thing. But we can do operations on it. For example, we can ask for a random instance of it, in which a, b, c and o are made specific: &#10005RandomInstance[GeometricScene[{a,b,c,o},{Triangle[{a,b,c}],CircleThrough[{a,b,c},o],o==Midpoint[{a,c}]}]]You can generate as many random instances as you want. We try to make the instances as generic as possible, with no coincidences that aren’t forced by the constraints: &#10005RandomInstance[GeometricScene[{a,b,c,o},{Triangle[{a,b,c}],CircleThrough[{a,b,c},o],o==Midpoint[{a,c}]}],3]OK, but now let’s “play Euclid”, and find geometric conjectures that are consistent with our setup: &#10005FindGeometricConjectures[GeometricScene[{a,b,c,o},{Triangle[{a,b,c}],CircleThrough[{a,b,c},o],o==Midpoint[{a,c}]}]]For a given geometric scene, there may be many possible conjectures. We try to pick out the interesting ones. In this case we come up with two—and what’s illustrated is the first one: that the line ba is perpendicular to the line cb. As it happens, this result actually appears in Euclid (it’s in Book 3, as part of Proposition 31)— though it’s usually called Thales’s theorem.In 12.0, we now have a whole symbolic language for representing typical things that appear in Euclid-style geometry. Here’s a more complex situation—corresponding to what’s called Napoleon’s theorem: &#10005RandomInstance[ GeometricScene[{"C", "B", "A", "C'", "B'", "A'", "Oc", "Ob", "Oa"}, {Triangle[{"C", "B", "A"}], TC == Triangle[{"A", "B", "C'"}], TB == Triangle[{"C", "A", "B'"}], TA == Triangle[{"B", "C", "A'"}], GeometricAssertion[{TC, TB, TA}, "Regular"], "Oc" == TriangleCenter[TC, "Centroid"], "Ob" == TriangleCenter[TB, "Centroid"], "Oa" == TriangleCenter[TA, "Centroid"], Triangle[{"Oc", "Ob", "Oa"}]}]]In 12.0 there are lots of new and useful geometric functions that work on explicit coordinates: &#10005CircleThrough[{{0,0},{2,0},{0,3}}] &#10005TriangleMeasurement[Triangle[{{0,0},{1,2},{3,4}}],"Inradius"]For triangles there are 12 types of “centers” supported, and, yes, there can be symbolic coordinates: &#10005TriangleCenter[Triangle[{{0,0},{1,2},{3,y}}],"NinePointCenter"]And to support setting up geometric statements we also need “geometric assertions”. In 12.0 there are 29 different kinds—such as "Parallel", "Congruent", "Tangent", "Convex", etc. Here are three circles asserted to be pairwise tangent: &#10005RandomInstance[GeometricScene[{a,b,c},{GeometricAssertion[{Circle[a],Circle[b],Circle[c]},"PairwiseTangent"]}]]Going Super-Symbolic with Axiomatic TheoriesVersion 11.3 introduced FindEquationalProof for generating symbolic representations of proofs. But what axioms should be used for these proofs? Version 12.0 introduces AxiomaticTheory, which gives axioms for various common axiomatic theories.Here’s my personal favorite axiom system: &#10005AxiomaticTheory["WolframAxioms"]What does this mean? In a sense it’s a more symbolic symbolic expression than we’re used to. In something like 1 + x we don’t say what the value of x is, but we imagine that it can have a value. In the expression above, a, b and c are pure “formal symbols” that serve an essentially. A comparative study on the preparation of various tantalum borides (including Ta 2 B, Ta 3 B 2, TaB, Ta 5 B 6, Ta 3 B 4, and TaB 2) in the Ta–B system was experimentally

Download hrping

Evaluation of the invariant reactions in the Ta-rich region of the Ta-B

/* select min(Ta.[fromDate]) from osrt ta where Ta.[fromDate] >= */ [%0]set @Todate = /* select max(Tb.[toDate]) from osrt tb where Tb.[toDate] SELECT ISNULL (z.date,DATEADD(s,-1,DATEADD(mm, DATEDIFF(m,0,MAX(z.date))+1,0)))as date, z.doc AS docno, case when grouping ( Z.NAME) = 1 and grouping (z.vatgroup) = 0 then 'MONTHLY SALES FOR' +' ' + z.vatgroupWHEN grouping ( Z.NAME) = 1 and grouping (z.vatgroup) =1 then 'TOTAL SALES FOR THE PERIOD' ELSE Z.NAME END as name, z.vatgroup,sum(z.net) AS NET, SUM(Z.VAT) AS VAT, SUM(Z.GROSS) AS GROSSFROM((SELECT T0.[TaxDate] AS Date, T0.[DocNum] as doc, T0.[CardName] as Name,T1.[VatGroup] AS VATGROUP, SUM(T1.[TotalSumSy]) as Net, sum(t1.[linevats])as VAT, SUM(T1.[GTotal]) AS GrossFROM OINV T0 INNER JOIN INV1 T1 ON T0.[DocEntry] = T1.[DocEntry]WHERE T0.[TaxDate] BETWEEN @fromdate AND @TodateGROUP BY T0.[TaxDate], T0.[DocNum],T0.[CardName],T1.[VatGroup])UNION ALL(SELECT T0.[TaxDate] AS Date, T0.[DocNum] as doc, T0.[CardName] as Name,T1.[VatGroup] AS VATGROUP, SUM(T1.[TotalSumSy])*-1 as Net, sum(t1.[linevats])*-1 AS VAT , SUM(T1.[GTotal])*-1 AS GROSSFROM ORIN T0 INNER JOIN RIN1 T1 ON T0.[DocEntry] = T1.[DocEntry]WHERE T0.[TaxDate] BETWEEN @fromdate AND @TodateGROUP BY T0.[TaxDate], T0.[DocNum],T0.[CardName],T1.[VatGroup] )) ZGROUP BY GROUPING SETS ((z.doc,z.vatgroup,z.name,z.date),(z.vatgroup,MONTH(z.date),YEAR(z.date)),()) order by date,grouping (z.vatgroup),z.vatgroup Summary:The ROLLUP and CUBE clauses can be considered shortcuts for predefined GROUPING SETS specifications.ROLLUP is equivalent to specifying a series of grouping set specifications starting with the empty grouping set '()' and successively followed by grouping sets where one additional expression is concatenated to the previous one. For example, if you have three grouping expressions, a, b, and c, and you specify ROLLUP, it is as though you specified a GROUPING SETS clause with the sets: (), (a), (a, b), and (a, b, c ). This construction is sometimes referred to as hierarchical groupings.CUBE offers even more groupings. Specifying CUBE is equivalent to specifying all possible GROUPING SETS. For example, if you have the same three grouping expressions, a, b, and c, and you specify CUBE, it is as though you specified a GROUPING SETS clause with the sets: (), (a), (a, b), (a, c), (b), (b, c), (c), and (a, b, c ).Kindly share your thoughts and comments on the use of group by extensions to obtain totals and grand totals in the comment section below. Your feedback will be highly appreciated.If you would like to know more about SQL in general, then I suggest you visit tuned for further blogs in my profilemkshah8 With regards,m.k. shahSAP B1 v 9.2. References/Acknowledgements:

j b ta k zeleg

This group tonight, at the gym. And [inaudible 00:42:00] say now, “Oh, gym, where do you go to the gym? Well, we live in Brooklyn.” See, so, all these words that are part of the conversation about the music, or the venue that we’re at, which is in the basement of a barbecue restaurant, see, all those words, basement, restaurant, barbecue, Brooklyn, gym, these are all called keywords, and they’ll all be part of a conversation. So, then, the way you changed the topic, is, you say, “By the way, I heard you mention earlier, that, ta, ta, ta, ta.” And now, the conversation just takes a little bit of a turn, and then, you’re on to topic B or topic C, and you do the same thing.And pretty soon, what are you looking for? Are you looking just to fill space and time? Or, do you have another goal in this conversation? And my view is, I have goals in my conversations. I want to find out if I have anything in common with the person or people I’m talking to. Sometimes, I do. More often than not, I do. Sometimes, I don’t, but, usually, I can find a topic of common interest. So, by referring to a topic that you heard earlier in the conversation, what are you doing? You’re sending in that signal again that said, “I’m listening, I’m paying attention to what you told me, because I remembered something that you said, and I’m curious about. A comparative study on the preparation of various tantalum borides (including Ta 2 B, Ta 3 B 2, TaB, Ta 5 B 6, Ta 3 B 4, and TaB 2) in the Ta–B system was experimentally

Version 3.5 b ta - MuseScore

FIGU~AS ~TEST DE D OMINÓ Es un;l prucb.. tJlle con s i ~ t c en CIl('ol1lr¡¡r Illí m'rtl, lltll': rallall '11 1\)\ c.. silleros en hl:lrl(O. om po t.c Para ha llar estos IlllmCrI >s s.: debe te ner en OlCnla lo sigUiente: D SP ., ., FX .b l og s 1) Los Olímcms ':.\rbn dd o (fIC h:1en bl:lIlw) a1 6. 2) Las rc bcjon c.~ cmrc los IlUIlll'roS pueden ser {k: rC¡X'lil'iün , ¡1lJ1l1\CIllO, ~Ul1la~,n:~L.:. I ~, elc. • ••. . . • · . .. ~ . .·' ·•• .•• • • ... 1 w • I w w .L IB R O • ° 0 sig ue el 6 (:llIIllCllla 1 } Si!!tlC el O (aurncma 1 ) NO!:! : después del 6 sigile e l {} Ejemplo. 2 r:llw el 5 p:lr.\ ser igual u la lcm lila f¡\1 ta el 4 R Jl I¡¡ : 51~ www.librospdfX.blogspot.com INST R UC C I01\:E.s . Ejl'rnp hl.l www.PSICOTECNICO1.blogspot.com TEST DE Ej emplo. 3 ·. + - i-! . ~ . • - .• .. t-:- ·.. .. RJLR+ - Rpta: sigue el 1/2 Ejem pln. -1 om ., og s po t.c ., Ejem plo. 5 www.librospdfX.blogspot.com 56 . w Rp ta : w w .L IB R O SP D FX .b l ., www.PSICOTECNICO1.blogspot.com .·•'... ·· .. Se observa que en la serie eenlml f;,lh.a el nÚm..:ro 6 para complcw los números dell al6 y en la serie exterior se repiten 2

Comments

User3903

16 Ɗan wasan gaba na Kano Pillars, Yusuf Abdullahi, shi ne kaɗi ya ci ƙwallo sama da uku a wasa ɗaya - inda ya ci Gombe United ƙwallo biyar a wasan da suka yi nasara 5-2 An ba da jan kati sau 49 An buga canjaras a wasa 86 Gombe ce ta fi kowa ɗibar ƙwallaye, inda aka zira mata 76 jimilla An ci ƙwallaye 848 An ci finareti sau 70 kuma an ɓarar da finareti sau 20 24 Yuni 2024Ƙasashen da suka kai zagayen 'yan 16 a Euro 2024, Euro 2024Asalin hoton, ReutersKowace tawaga ta buga aƙalla wasa biyu yanzu haka a gasar kofin ƙasashen Turai ta Euro 2024, inda tuni ƙasashe huɗu suka samu gurbin kaiwa zagayen 'yan 16.Hakan na nufin akwai gurbin tawaga 12 da za a cike nan gaba kaɗan. Tawaga biyu a saman kowane rukuni ne za su kai zagaye na gaba, inda daga baya kuma za a tawagogi huɗu da suka ƙare a mataki na uku mafiya ƙoƙari. Tawagogin da suka kai zagaye na gaba zuwa yanzu su ne: Germany Portugal Switzerland Spain A yau kuma za a wasan wadda za ta bi sawun Spain ɗin tsakanin Italy da Croatia a wasan Rukunin B, yayin da Albania za ta koma gida daga rukunin. 24 Yuni 2024Euro 2024: Wasannin da za a fafata a yauYau Litinin ce rana ta 10 da fara gasar ƙasashen Turai ta Euro 2024, inda kowace tawaga ta buga aƙalla wasa biyu. A yau Rukunin B ne za su fafata a yau kamar haka: Italy (8:00) Croatia Albania (8:00) Spain 24 Yuni 2024Ƙungiyoyin da za su wakilci Najeriya a gasar zakarun AfirkaAsalin hoton, @Rangers_IntlBayan Enugu Rangers ta zama gwarzuwar gasar firimiyar Najeriya ta NPFL, yanzu kuma sai tunanin buga gasar zakaru ta nahiyar Afirka. Remo Stars ce ta biyu da kuma Enyimba ta uku. Gurbin da ake ware wa Najeriya shi ne; kulob ɗin da ya lashe firimiya zai buga Caf Champions League (CafCL) tare da wanda ya yi masa na biyu. Kulob na uku kuma zai buga CAF Confederation Cup (CafCC). Rangers za ta buga CafCL Remo za ta buga CafCL Enyimba za ta buga CafCC Ƙungoyiyin da suka faɗa ƙaramar gasar firimiyar Najeriya su ne: Sporting Lagos Doma United Heartland Gombe United Asalin hoton, NPFL24 Yuni 2024Yadda Rangers ta zama gwarzuwar firimiyar Najeriya karo na takwasAsalin hoton, NPFLA ƙarshe dai ƙungiyar ƙwallon ƙafa ta Enugu Rangers ta jinjina kofin

2025-04-15
User6835

And flexible string. It is whirled tension, TB is vertically upwards, i.e., towardsalong a vertical circle so that the bob performs the centre, and opposite to mg. In this case alsoa vertical circular motion and the string rotatesin a vertical plane. At any position of the bob, their resultant is the centripetal force. If vB isthere are only two forces acting on the bob: the speed at the lowermost point, we get, A TB mg mv 2 --- (1.11) B r While coming down from the uppermost to the lowermost point, the vertical displacement is 2r and the motion is governed only by gravity. Hence the corresponding decrease in the gravitational potential energy is converted into the kinetic energy. 1 1 ?mg 2r 2 mv 2 2 mv 2 B A ? v 2 v 2 4rg --- (1.12) B A Using this in the eq (1.11), and usin?g vA mminin B rg from Eq. (1.10) we get, vB min 5rg --- (1.13) Fig 1.10: Vertical circular motion. Subtracting eq (1.9) from eq (1.11) , we can(a) its weight mg, vertically downwards, which write, mv 2 v 2 --- (1.14)is constant and (b) the force due to the tension TB TA 2mg B A ralong the string, directed along the string and Using eq (1.12) and rearranging, we get,towards the centre. Its magnitude changes TB TA 6mg --- (1.15)periodically with time and location. Positions when the string is horizontal (C As the motion is non uniform, the resultant and D): Force due to the tension is the onlyof these two forces is not directed towards force towards the centre as weight mg isthe center except at the uppermost and the perpendicular to the tension. Thus, force duelowermost positions of the bob. At all the other to the tension is the centripetal force used topositions, part of the resultant is tangential and change the direction of the velocity and weightis used to change the speed. mg is used only to change the speed.Uppermost position (A): Both, weight mg and Using similar mathematics, it can be shownforce due to tension TA are downwards, i.e., thattowards the centre. In this case, their resultant TC TA TD TA 3mg and vC minis used only as the centripetal force. Thus, if v D min 3rgvA is the speed at the uppermost point, we get, Arbitrary positions: Force due to the tension 2 mg TA mv A --- (1.9) and weight are neither along the same line, r nor perpendicular. Tangential component of Radius r of the circular motion is the weight is used to change the speed. It decreaseslength of the string. For minimum possible the speed while going up and increases it whilespeed at this point (or if the motion is to be coming down. 10Remember this 1.4.2 Sphere of Death (मतृ ्‍यु गोल): This is a popular show in a circus. During1. Equation (1.15) is independent of v and r. this, two-wheeler rider (or riders) undergo2. T can never be exactly equal to

2025-04-14
User2315

Babbar gasar firimiyar Najeriya a karo na takwas bayan doke Gombe United har gida da ci 2-1.Rangers ta samu jimillar maki 70 a gasar ta Nigeria Professional Footbal League (NPFL) kakar 2023-24, wanda hakan ke nufin ta samu tikitin zuwa gasar zakarun Afirka.An gudanar da bikin ba ta kofin ne a filin wasa na Jos International Stadium - inda Gome United ke buga wasa - bayan wasan mako na 38.Rangers ce ta fara cin ƙwallo minti uku da take wasa ta hannun Ogunleye, sannan Obaje ya ƙara minti huɗu bayan haka, kafin Hassan ya farke wa Gombe ƙwallo ɗaya a minti na 25.Asalin hoton, NPFL24 Yuni 2024Wasa mai zafi tsakanin Italiya da Croatia, Italy v CroatiaAsalin hoton, EPAMai riƙe da kofin gasar ƙasashen Turai ta Euro 2024 za ta fafata da Crotia a yau Litinin domin neman gurbin zuwa zagayen 'yan 16. Yayin da take da maki uku a rukunin B, Italiya ta fi samun damar kaiwa zagayen na gaba, sama da Croatia. Ita kuwa Croatia, za ta kammala wasannin a mataki na biyu idan ta doke Italiya kuma ta bi sawun Sifaniya, wadda ta kai zagaye na gaba a matsayin ta ɗaya a rukunin. Italiya ce ta biyu kuma za ta ƙare a matakin idan har ta guje wa rashin nasara a hannun Croatia. 24 Yuni 2024MarabaBarkanmu da sake haɗuwa a shafin labarin wasanni na kai-tsaye tare da ni Umar Mikail. Ku biyo mu domin sanin yadda take kasancewa a sassa daban-daban na duniyar wasanni, musamman gasar ƙasashen Turai ta Euro 2024.

2025-04-14
User7507

F(M) - Hình H' = F(H) ⇔ H' = - O = F(O) ⇔ O là điểm bất động. - PBH mà mọi điểm trong mặt phẳng đều biến thành chính nó được gọi là phép đồng nhất. Kí hiệu . - (tích hai PBH bằng cách thực hiện liên tiếp PBH F rồi G )2. Phép dời hình PBH F là PDH và A' = F(A); B' = F(B) thì A'B' = AB (bảo toàn khoảng cách giữa hai điểm bất kì) PDH biến 3. Phép tịnh tiến theo , kí hiệu 4. Phép đối xứng trục (ĐXTR) d , kí hiệu Đd đối xứng nhau qua d 5. Phép đối xứng tâm (ĐXT) I , kí hiệu ĐI 6. Phép vị tự (PVT) tâm I tỉ số k , kí hiệu V(I;k) 7. Phép đồng dạng (PĐD) PĐD tỉ số k (k > 0) là PBH sao cho với hai điểm A;B bất kì và ảnh A';B' của nó ta có A'B' = kAB PĐD biến 8. Biểu thức tọa độ Giả sử M(x;y) , M(x';y') . +) PTT theo là +) Phép đối xứng tâm I(a;b) là +) Phép đối xứng trục d khi +) Phép quay tâm I(a;b) , góc α là Đặc biệt: Tâm quay là O(0;0) thì Phép vị tự tâm I(a;b) , tỉ số k là 9. Ảnh của đường thẳng d qua PTT; phép ĐXT; PQ; PVT Giả sử F: ( F ở đây là ). Lấy M(x;y) ∈ d . Giả sử F: với M'(x';y') Viết biểu thức tọa độ tương ứng với PBH đề cho ⇒ Ta có M ∈ d (thay x;y vào đường thẳng d ) ta được đường thẳng d' . 10. Ảnh của đường tròn Giả sử F: ( ở đây là ) Xác định tâm

2025-04-05
User8595

To introduce symbolic “geometric scenes” that have symbols representing constructs such as points, and then to define geometric objects and relations in terms of them. For example, here’s a geometric scene representing a triangle a, b, c, and a circle through a, b and c, with center o, with the constraint that o is at the midpoint of the line from a to c: &#10005GeometricScene[{a,b,c,o},{Triangle[{a,b,c}],CircleThrough[{a,b,c},o],o==Midpoint[{a,c}]}]On its own, this is just a symbolic thing. But we can do operations on it. For example, we can ask for a random instance of it, in which a, b, c and o are made specific: &#10005RandomInstance[GeometricScene[{a,b,c,o},{Triangle[{a,b,c}],CircleThrough[{a,b,c},o],o==Midpoint[{a,c}]}]]You can generate as many random instances as you want. We try to make the instances as generic as possible, with no coincidences that aren’t forced by the constraints: &#10005RandomInstance[GeometricScene[{a,b,c,o},{Triangle[{a,b,c}],CircleThrough[{a,b,c},o],o==Midpoint[{a,c}]}],3]OK, but now let’s “play Euclid”, and find geometric conjectures that are consistent with our setup: &#10005FindGeometricConjectures[GeometricScene[{a,b,c,o},{Triangle[{a,b,c}],CircleThrough[{a,b,c},o],o==Midpoint[{a,c}]}]]For a given geometric scene, there may be many possible conjectures. We try to pick out the interesting ones. In this case we come up with two—and what’s illustrated is the first one: that the line ba is perpendicular to the line cb. As it happens, this result actually appears in Euclid (it’s in Book 3, as part of Proposition 31)— though it’s usually called Thales’s theorem.In 12.0, we now have a whole symbolic language for representing typical things that appear in Euclid-style geometry. Here’s a more complex situation—corresponding to what’s called Napoleon’s theorem: &#10005RandomInstance[ GeometricScene[{"C", "B", "A", "C'", "B'", "A'", "Oc", "Ob", "Oa"}, {Triangle[{"C", "B", "A"}], TC == Triangle[{"A", "B", "C'"}], TB == Triangle[{"C", "A", "B'"}], TA == Triangle[{"B", "C", "A'"}], GeometricAssertion[{TC, TB, TA}, "Regular"], "Oc" == TriangleCenter[TC, "Centroid"], "Ob" == TriangleCenter[TB, "Centroid"], "Oa" == TriangleCenter[TA, "Centroid"], Triangle[{"Oc", "Ob", "Oa"}]}]]In 12.0 there are lots of new and useful geometric functions that work on explicit coordinates: &#10005CircleThrough[{{0,0},{2,0},{0,3}}] &#10005TriangleMeasurement[Triangle[{{0,0},{1,2},{3,4}}],"Inradius"]For triangles there are 12 types of “centers” supported, and, yes, there can be symbolic coordinates: &#10005TriangleCenter[Triangle[{{0,0},{1,2},{3,y}}],"NinePointCenter"]And to support setting up geometric statements we also need “geometric assertions”. In 12.0 there are 29 different kinds—such as "Parallel", "Congruent", "Tangent", "Convex", etc. Here are three circles asserted to be pairwise tangent: &#10005RandomInstance[GeometricScene[{a,b,c},{GeometricAssertion[{Circle[a],Circle[b],Circle[c]},"PairwiseTangent"]}]]Going Super-Symbolic with Axiomatic TheoriesVersion 11.3 introduced FindEquationalProof for generating symbolic representations of proofs. But what axioms should be used for these proofs? Version 12.0 introduces AxiomaticTheory, which gives axioms for various common axiomatic theories.Here’s my personal favorite axiom system: &#10005AxiomaticTheory["WolframAxioms"]What does this mean? In a sense it’s a more symbolic symbolic expression than we’re used to. In something like 1 + x we don’t say what the value of x is, but we imagine that it can have a value. In the expression above, a, b and c are pure “formal symbols” that serve an essentially

2025-04-20
User6101

/* select min(Ta.[fromDate]) from osrt ta where Ta.[fromDate] >= */ [%0]set @Todate = /* select max(Tb.[toDate]) from osrt tb where Tb.[toDate] SELECT ISNULL (z.date,DATEADD(s,-1,DATEADD(mm, DATEDIFF(m,0,MAX(z.date))+1,0)))as date, z.doc AS docno, case when grouping ( Z.NAME) = 1 and grouping (z.vatgroup) = 0 then 'MONTHLY SALES FOR' +' ' + z.vatgroupWHEN grouping ( Z.NAME) = 1 and grouping (z.vatgroup) =1 then 'TOTAL SALES FOR THE PERIOD' ELSE Z.NAME END as name, z.vatgroup,sum(z.net) AS NET, SUM(Z.VAT) AS VAT, SUM(Z.GROSS) AS GROSSFROM((SELECT T0.[TaxDate] AS Date, T0.[DocNum] as doc, T0.[CardName] as Name,T1.[VatGroup] AS VATGROUP, SUM(T1.[TotalSumSy]) as Net, sum(t1.[linevats])as VAT, SUM(T1.[GTotal]) AS GrossFROM OINV T0 INNER JOIN INV1 T1 ON T0.[DocEntry] = T1.[DocEntry]WHERE T0.[TaxDate] BETWEEN @fromdate AND @TodateGROUP BY T0.[TaxDate], T0.[DocNum],T0.[CardName],T1.[VatGroup])UNION ALL(SELECT T0.[TaxDate] AS Date, T0.[DocNum] as doc, T0.[CardName] as Name,T1.[VatGroup] AS VATGROUP, SUM(T1.[TotalSumSy])*-1 as Net, sum(t1.[linevats])*-1 AS VAT , SUM(T1.[GTotal])*-1 AS GROSSFROM ORIN T0 INNER JOIN RIN1 T1 ON T0.[DocEntry] = T1.[DocEntry]WHERE T0.[TaxDate] BETWEEN @fromdate AND @TodateGROUP BY T0.[TaxDate], T0.[DocNum],T0.[CardName],T1.[VatGroup] )) ZGROUP BY GROUPING SETS ((z.doc,z.vatgroup,z.name,z.date),(z.vatgroup,MONTH(z.date),YEAR(z.date)),()) order by date,grouping (z.vatgroup),z.vatgroup Summary:The ROLLUP and CUBE clauses can be considered shortcuts for predefined GROUPING SETS specifications.ROLLUP is equivalent to specifying a series of grouping set specifications starting with the empty grouping set '()' and successively followed by grouping sets where one additional expression is concatenated to the previous one. For example, if you have three grouping expressions, a, b, and c, and you specify ROLLUP, it is as though you specified a GROUPING SETS clause with the sets: (), (a), (a, b), and (a, b, c ). This construction is sometimes referred to as hierarchical groupings.CUBE offers even more groupings. Specifying CUBE is equivalent to specifying all possible GROUPING SETS. For example, if you have the same three grouping expressions, a, b, and c, and you specify CUBE, it is as though you specified a GROUPING SETS clause with the sets: (), (a), (a, b), (a, c), (b), (b, c), (c), and (a, b, c ).Kindly share your thoughts and comments on the use of group by extensions to obtain totals and grand totals in the comment section below. Your feedback will be highly appreciated.If you would like to know more about SQL in general, then I suggest you visit tuned for further blogs in my profilemkshah8 With regards,m.k. shahSAP B1 v 9.2. References/Acknowledgements:

2025-03-26

Add Comment