Latex macros

Author: b | 2025-04-23

★★★★☆ (4.2 / 1913 reviews)

amp watt calculator

Download latex-macros-packages for free. latex-macro-packages. Here I list some latex macro packages. LATEX-MACROS-PACKAGES. Can be downloaded many latex macro packages from the git repository of latex-macros-packages project.

Download ludo club fastest ludo king of ludo

VHarisop/latex-macros: A set of useful macros for LaTeX - GitHub

Parte de TeX ysirve para definir comandos nuevos, al igual que \newcommandSe pueden declarar comandos nuevos dentro de entornosde manera similar a declararlos de manera independiente. Aquítenéis más información.. Os hablo de ellos porque los veréis amenudo cuando busquéis ejemplos por ahí.En definitiva, ¿qué hay que saber?Diría que lo más importante es saber la diferencia entre definir(\new) y pisar (\renew) un comando o entorno existente y cuándohay que hacer lo uno o lo otro. Tampoco está de más recordar queescribimos tanto las definiciones como las modificaciones en elpreámbulo. Igualmente, nos viene bien saber de la existencia decomandos de TeX como \let y \def que nos hacen la vida más fácil.Para acabar, os dejo mi proceso para crear macros: Escribo mi combinación de comandos en el cuerpo del documento yverifico que funciona. Escribo cómo quiero que sea mi comando o entorno final y lo comparocon mi combinación de comandos. Traslado la combinación al preámbulo y le doy forma según lasintaxis correspondiente. Extraigo los argumentos y pienso si puedo darle un valor pordefecto a alguno de ellos. Pruebo si funciona. Lo dicho, a escribir macros se aprende escribiendo macros. ¡Dadleduro!ReferenciasLaTeX example: How to create your own commands with newcommandLaTeX/Macros en Wikibooks\newcommand with arguments in LaTeXPlain TeX vs. LaTeX Macros en TeXExchangeLaTeX/Plain TeX en WikibooksList of higher-level LaTeX commands corresponding to TeX commands en TeXExchangeWhat is the difference between \def and \newcommand? en TeXExchange Nuestras propias macrosHoy vamos a salir de mi zona de confort y hablar sobre la creación demacros, es decir, de nuevos comandos y entornos¡Líos denomenclatura a la vista! Dijimos hace mucho que LaTeX es unconjunto de macros para TeX. Luego hemos separado estasmacros en comandos y entornos, pero un entorno no deja de serun conjunto de comandos que afecta de forma local. Llamaremos tambiénmacro a los comandos (y por extensión entornos) quedefinamos nosotros, tal y como se suele hacer en elmundillo.. No soy ninguna experta en esto, pero hay un par deideas que me parece que hay que tener claras a la hora de definircosas en LaTeX. Básicamente voy a contar lo que me hubiera gustado queme contaran cuando empecé con esto, más que nada para no copiar deStackOverflow a ciegas.Lo primero y más importante que tenemos que saber a la hora de jugarcon las macros en LaTeX es que tenemos dos opcionesPara ser sinceros también está \providecommand, quecrea el comando si no existe y si no ignora la definición, pero notiene un primopara los entornos.: Crear un entorno o comando desde cero. Así conseguimos que LaTeXhaga algo que no hacía o guardamos un conjunto de órdenes que usamosa menudo en una macro con el objetivo escribir menos. La palabraclave para esto es new. Pisar un entorno o comando existente. En este caso la idea esmodificar el comportamiento de cierto comando o entorno a nuestrogusto. Se conoce como renew. El siguiente concepto en orden de importancia es que podemos(re)definir comandos en cualquier parte del documento, pero para tenertodo perfectamente organizado es preferible hacerlo en el preámbulo.Veamos entonces como crear comandos y entornos nuevos y modificar losexistentes. Voy a intentar que todos los ejemplos resuelvanproblemas reales, que no sean de juguete.Escribir comandosHan ido apareciendo comandos nuevosCuando aprendimos a escribir ecuaciones vimos

GitHub - maneandrea/LaTeX-macro: A list of my macros in LaTeX

TeXstudio VS TeXShop TeXstudio is a powerful, feature-rich LaTeX editor that offers extensive customization and support for advanced users, making it suitable for complex document preparation. In contrast, TeXShop provides a simpler, more user-friendly experience tailored for macOS users, ideal for smaller projects and those new to LaTeX. TeXstudio Pros: Feature-rich with extensive customization options Cross-platform compatibility Strong community support and plugins Integrated version control Advanced code completion and macros Cons: Can be overwhelming for beginners Requires some configuration to optimize Heavy for lower-end systems TeXShop Pros: Simple and user-friendly interface Optimized for macOS users Integrated PDF viewer and syncing Good for small to medium-sized projects Lightweight and easy to set up Cons: Limited to macOS Fewer advanced features compared to alternatives Not suitable for larger projects Compare TeXstudio Compare Gummi and TeXstudio and decide which is most suitable for you. Compare Kile and TeXstudio and decide which is most suitable for you. Compare TeX Live and TeXstudio and decide which is most suitable for you. Compare TeXmacs and TeXstudio and decide which is most suitable for you. Compare Texmaker and TeXstudio and decide which is most suitable for you. Compare TeXnicCenter and TeXstudio and decide which is most suitable for you. Compare TeXworks and TeXstudio and decide which is most suitable for you. Compare VerbTeX LaTeX Editor and TeXstudio and decide which is most suitable for you. Compare Overleaf and TeXstudio and decide which is most suitable for you.. Download latex-macros-packages for free. latex-macro-packages. Here I list some latex macro packages.

GitHub - dannywillems/latex-macros-math: A set of LaTeX macro

Begin , whichallows me to allows me to autocomplete the parts of LaTeX that I don’t want tospend time typing but use often. For instance, in the TeX below, snippets meansI only have to type align* once. \begin{align*} \pi(\theta | x) = \frac{\pi(\theta) p(x | \theta)} {\int \pi(\theta) p(x | \theta) d\theta}\end{align*}And should I need to change align* to just align, I only have toedit this in one of the parens instead of in both lines.To use vim plugins (after installing), you just need to add the github page to your .vimrc file, e.g., forUltisnips, add the line Plugin 'SirVer/ultisnips'and execute :PluginInstall while in command mode in vim.TeX skeletonFor writing quick notes, I have a TeX skeleton file that always loads when Istart a new vim document, i.e., when executing vim notes.tex in thecommand line, a fully-functional tex skeleton with all the packages I normally use and font styles areautomatically loaded. E.g., a version of the following: \documentclass[11pt]{article}\usepackage{amsmath, amssymb, amsthm, bbm}\usepackage{booktabs, fancyhdr, verbatim, graphicx}\title{title}\author{Diana Cai}\begin{document}\maketitle\end{document}subfilesFor longer documents, I use the subfiles package extensively.This allows me to split a document into smaller files, which can then beindividually compiled into its own document. Subfiles inherit the packages, etc.,that are defined in the main file in which the subfiles are inserted.The advantage of using subfiles is that youcan just edit the subfile you’re currently focusing on, which is much fasterthan compiling the entire document (especially one with many images and references).This also helps with reducing the number of git conflicts one encounters whencollaborating on a document.macrosI have a set of macros that I commonly use that are imported when I load a .texdocument. For writing papers, I’ll include a separate macros.tex file with allof my macro definitions that I reuse often. Some example macros I’ve defined: \reals for \mathbb{R} \E for \mathbb{E} \iid for \stackrel{\mathrm{iid}}{\sim} \convas for \stackrel{\mathrm{a.s.}}{\longrightarrow}Also super convenient if you’re defining a variable that is always bold if, forinstance, that variable is a vector.My collaborators and I often have a commenting file we use to add various comments (in different colors too!) in the margins, in the text, or highlighting certain regions of the text.An alternative is to use a LaTeX commenting packageand then define custom commands controlling how the comments appear in the text..vimrcYou can check out my .vimrc file on github to see how I set up keybindings, plugins, andmy .tex skeleton file. I just noticed that Pandoc's internal processing of LaTeX macros in math mode wraps the expansion in an unexpected additional layer of { }s---at least it does so for output to HTML using MathJax.Here's a minimal working example:\newcommand\foo{+}Testing: $\mu\foo\eta$.HTML will contain:Testing: \(\mu{+}\eta\).">Testing: \(\mu{+}\eta\).(This would also be true if we had instead said \newcommand\foo\alpha, without using { }s in the definition.)I can get myself into the mindset where this would seem like a good idea, to avoid the expanded text getting smushed together with something following it and then wrongly interpreted. But are there are any cases where that could really happen? Won't the subsequent text already have to start with whitespace, or a \ or a } or something else, for Pandoc's lexer to have stopped reading \foo in the first place?The downside of the existing behavior is that it messes up the math spacing. \mu+\eta will be spaced properly, with + interpreted as a mathrel; whereas \mu{+}\eta will be spaced smushed together, with {+} interpreted as a mathord.

Introduction to Macros in Latex

Integration of functions that are the result of a chain-rule derivativeIntermediate Value TheoremLet [latex]f[/latex] be continuous over a closed bounded interval [latex][a,b][/latex]; if [latex]z[/latex] is any real number between [latex]f(a)[/latex] and [latex]f(b)[/latex], then there is a number [latex]c[/latex] in [latex][a,b][/latex] satisfying [latex]f(c)=z[/latex]intuitive definition of the limitIf all values of the function [latex]f(x)[/latex] approach the real number [latex]L[/latex] as the values of [latex]x(\ne a)[/latex] approach [latex]a[/latex], [latex]f(x)[/latex] approaches [latex]L[/latex]inverse functionfor a function [latex]f[/latex], the inverse function [latex]f^{-1}[/latex] satisfies [latex]f^{-1}(y)=x[/latex] if [latex]f(x)=y[/latex]inverse hyperbolic functionsthe inverses of the hyperbolic functions where [latex]\cosh[/latex] and [latex]\text{sech}[/latex] are restricted to the domain [latex][0,\infty)[/latex]; each of these functions can be expressed in terms of a composition of the natural logarithm function and an algebraic functioninverse trigonometric functionsthe inverses of the trigonometric functions are defined on restricted domains where they are one-to-one functionsiterative processprocess in which a list of numbers [latex]x_0,x_1,x_2,x_3, \cdots[/latex] is generated by starting with a number [latex]x_0[/latex] and defining [latex]x_n=F(x_{n-1})[/latex] for [latex]n \ge 1[/latex]jump discontinuityA jump discontinuity occurs at a point [latex]a[/latex] if [latex]\underset{x\to a^-}{\lim}f(x)[/latex] and [latex]\underset{x\to a^+}{\lim}f(x)[/latex] both exist, but [latex]\underset{x\to a^-}{\lim}f(x) \ne \underset{x\to a^+}{\lim}f(x)[/latex]laminaa thin sheet of material; laminas are thin enough that, for mathematical purposes, they can be treated as if they are two-dimensionalleft-endpoint approximationan approximation of the area under a curve computed by using the left endpoint of each subinterval to calculate the height of the vertical sides of each rectangleL’Hôpital’s ruleif [latex]f[/latex] and [latex]g[/latex] are differentiable functions over an interval [latex]a[/latex], except possibly at [latex]a[/latex], and [latex]\underset{x\to a}{\lim} f(x)=0=\underset{x\to a}{\lim} g(x)[/latex] or [latex]\underset{x\to a}{\lim} f(x)[/latex] and [latex]\underset{x\to a}{\lim} g(x)[/latex] are infinite, then [latex]\underset{x\to a}{\lim}\dfrac{f(x)}{g(x)}=\underset{x\to a}{\lim}\dfrac{f^{\prime}(x)}{g^{\prime}(x)}[/latex], assuming the limit on the right exists or is [latex]\infty[/latex] or [latex]−\infty[/latex]limit at infinitythe limiting value, if it exists, of a function as [latex]x\to \infty[/latex] or [latex]x\to −\infty[/latex]limits of integrationthese values appear near the top and bottom of the integral sign and define the interval over which the function should be integratedlinear approximationthe linear function [latex]L(x)=f(a)+f^{\prime}(a)(x-a)[/latex] is the linear approximation of [latex]f[/latex] at [latex]x=a[/latex]linear functiona function that can be written in the form [latex]f(x)=mx+b[/latex]local extremumif [latex]f[/latex] has a local maximum or local minimum at [latex]c[/latex], we say [latex]f[/latex] has a local extremum at [latex]c[/latex]local maximumif there exists an interval [latex]I[/latex] such that [latex]f(c)\ge f(x)[/latex] for all [latex]x\in I[/latex], we say [latex]f[/latex] has a local maximum at [latex]c[/latex]local minimumif there exists an interval [latex]I[/latex] such that [latex]f(c)\le f(x)[/latex] for all [latex]x\in I[/latex], we say [latex]f[/latex] has a local minimum at [latex]c[/latex]logarithmic differentiationis a technique that allows us to differentiate a function by first taking the natural logarithm of both sides of an equation, applying properties of logarithms to simplify the equation, and differentiating implicitlylogarithmic functiona function of the form [latex]f(x)=\log_b(x)[/latex] for some base [latex]b>0, \, b

LaTeX Macros: Creating Macros Macros without arguments

[latex]S[/latex] is differentiable on [latex]S[/latex]differentiable functiona function for which [latex]f^{\prime}(x)[/latex] exists is a differentiable functiondifferentialthe differential [latex]dx[/latex] is an independent variable that can be assigned any nonzero real number; the differential [latex]dy[/latex] is defined to be [latex]dy=f^{\prime}(x) \, dx[/latex]differential formgiven a differentiable function [latex]y=f^{\prime}(x)[/latex], the equation [latex]dy=f^{\prime}(x) \, dx[/latex] is the differential form of the derivative of [latex]y[/latex] with respect to [latex]x[/latex]differentiationthe process of taking a derivativediscontinuity at a pointA function is discontinuous at a point or has a discontinuity at a point if it is not continuous at the pointdisk methoda special case of the slicing method used with solids of revolution when the slices are disksdomainthe set of inputs for a functiondoubling timeif a quantity grows exponentially, the doubling time is the amount of time it takes the quantity to double, and is given by [latex]\frac{(\text{ln}2)}{k}[/latex]end behaviorthe behavior of a function as [latex]x\to \infty[/latex] and [latex]x\to −\infty[/latex]epsilon-delta definition of the limit[latex]\underset{x\to a}{\lim}f(x)=L[/latex] if for every [latex]\varepsilon >0[/latex], there exists a [latex]\delta >0[/latex] such that if [latex]0even functiona function is even if [latex]f(−x)=f(x)[/latex] for all [latex]x[/latex] in the domain of [latex]f[/latex]exponentthe value [latex]x[/latex] in the expression [latex]b^x[/latex]exponential decaysystems that exhibit exponential decay follow a model of the form [latex]y={y}_{0}{e}^{\text{−}kt}[/latex]exponential growthsystems that exhibit exponential growth follow a model of the form [latex]y={y}_{0}{e}^{kt}[/latex]extreme value theoremif [latex]f[/latex] is a continuous function over a finite, closed interval, then [latex]f[/latex] has an absolute maximum and an absolute minimumFermat’s theoremif [latex]f[/latex] has a local extremum at [latex]c[/latex], then [latex]c[/latex] is a critical point of [latex]f[/latex]first derivative testlet [latex]f[/latex] be a continuous function over an interval [latex]I[/latex] containing a critical point [latex]c[/latex] such that [latex]f[/latex] is differentiable over [latex]I[/latex] except possibly at [latex]c[/latex]; if [latex]f^{\prime}[/latex] changes sign from positive to negative as [latex]x[/latex] increases through [latex]c[/latex], then [latex]f[/latex] has a local maximum at [latex]c[/latex]; if [latex]f^{\prime}[/latex] changes sign from negative to positive as [latex]x[/latex] increases through [latex]c[/latex], then [latex]f[/latex] has a local minimum at [latex]c[/latex]; if [latex]f^{\prime}[/latex] does not change sign as [latex]x[/latex] increases through [latex]c[/latex], then [latex]f[/latex] does not have a local extremum at [latex]c[/latex]frustuma portion of a cone; a frustum is constructed by cutting the cone with a plane parallel to the basefunctiona set of inputs, a set of outputs, and a rule for mapping each input to exactly one outputfundamental theorem of calculusthe theorem, central to the entire development of calculus, that establishes the relationship between differentiation and integrationfundamental theorem of calculus, part 1uses a definite integral to define an antiderivative of a functionfundamental theorem of calculus, part 2(also, evaluation theorem) we can evaluate a definite integral by evaluating the antiderivative of the integrand at the endpoints of the interval and subtractinggraph of a functionthe set of points [latex](x,y)[/latex] such that [latex]x[/latex] is. Download latex-macros-packages for free. latex-macro-packages. Here I list some latex macro packages. LATEX-MACROS-PACKAGES. Can be downloaded many latex macro packages from the git repository of latex-macros-packages project.

Writing LaTeX with macros : r/LaTeX - Reddit

In the domain of [latex]f[/latex] and [latex]y=f(x)[/latex]half-lifeif a quantity decays exponentially, the half-life is the amount of time it takes the quantity to be reduced by half. It is given by [latex]\frac{(\text{ln}2)}{k}[/latex]higher-order derivativea derivative of a derivative, from the second derivative to the [latex]n[/latex]th derivative, is called a higher-order derivativeHooke’s lawthis law states that the force required to compress (or elongate) a spring is proportional to the distance the spring has been compressed (or stretched) from equilibrium; in other words, [latex]F=kx,[/latex] where [latex]k[/latex] is a constanthorizontal asymptoteif [latex]\underset{x\to \infty }{\lim}f(x)=L[/latex] or [latex]\underset{x\to −\infty }{\lim}f(x)=L[/latex], then [latex]y=L[/latex] is a horizontal asymptote of [latex]f[/latex]horizontal line testa function [latex]f[/latex] is one-to-one if and only if every horizontal line intersects the graph of [latex]f[/latex], at most, oncehydrostatic pressurethe pressure exerted by water on a submerged objecthyperbolic functionsthe functions denoted [latex]\sinh, \, \cosh, \, \tanh, \, \text{csch}, \, \text{sech}[/latex], and [latex]\coth[/latex], which involve certain combinations of [latex]e^x[/latex] and [latex]e^{−x}[/latex]implicit differentiationis a technique for computing [latex]\frac{dy}{dx}[/latex] for a function defined by an equation, accomplished by differentiating both sides of the equation (remembering to treat the variable [latex]y[/latex] as a function) and solving for [latex]\frac{dy}{dx}[/latex]increasing on the interval [latex]I[/latex]a function increasing on the interval [latex]I[/latex] if for all [latex]x_1, \, x_2\in I, \, f(x_1)\le f(x_2)[/latex] if [latex]x_1indefinite integralthe most general antiderivative of [latex]f(x)[/latex] is the indefinite integral of [latex]f[/latex]; we use the notation [latex]\displaystyle\int f(x) dx[/latex] to denote the indefinite integral of [latex]f[/latex]independent variablethe input variable for a functionindeterminate formswhen evaluating a limit, the forms [latex]0/0[/latex], [latex]\infty / \infty[/latex], [latex]0 \cdot \infty[/latex], [latex]\infty -\infty[/latex], [latex]0^0[/latex], [latex]\infty^0[/latex], and [latex]1^{\infty}[/latex] are considered indeterminate because further analysis is required to determine whether the limit exists and, if so, what its value isinfinite discontinuityAn infinite discontinuity occurs at a point [latex]a[/latex] if [latex]\underset{x\to a^-}{\lim}f(x)=\pm \infty[/latex] or [latex]\underset{x\to a^+}{\lim}f(x)=\pm \infty[/latex]infinite limitA function has an infinite limit at a point [latex]a[/latex] if it either increases or decreases without bound as it approaches [latex]a[/latex]infinite limit at infinitya function that becomes arbitrarily large as [latex]x[/latex] becomes largeinflection pointif [latex]f[/latex] is continuous at [latex]c[/latex] and [latex]f[/latex] changes concavity at [latex]c[/latex], the point [latex](c,f(c))[/latex] is an inflection point of [latex]f[/latex]initial value problema problem that requires finding a function [latex]y[/latex] that satisfies the differential equation [latex]\frac{dy}{dx}=f(x)[/latex] together with the initial condition [latex]y(x_0)=y_0[/latex]instantaneous rate of changethe rate of change of a function at any point along the function [latex]a[/latex], also called [latex]f^{\prime}(a)[/latex], or the derivative of the function at [latex]a[/latex]integrable functiona function is integrable if the limit defining the integral exists; in other words, if the limit of the Riemann sums as [latex]n[/latex] goes to infinity existsintegrandthe function to the right of the integration symbol; the integrand includes the function being integratedintegration by substitutiona technique for integration that allows

Comments

User3729

Parte de TeX ysirve para definir comandos nuevos, al igual que \newcommandSe pueden declarar comandos nuevos dentro de entornosde manera similar a declararlos de manera independiente. Aquítenéis más información.. Os hablo de ellos porque los veréis amenudo cuando busquéis ejemplos por ahí.En definitiva, ¿qué hay que saber?Diría que lo más importante es saber la diferencia entre definir(\new) y pisar (\renew) un comando o entorno existente y cuándohay que hacer lo uno o lo otro. Tampoco está de más recordar queescribimos tanto las definiciones como las modificaciones en elpreámbulo. Igualmente, nos viene bien saber de la existencia decomandos de TeX como \let y \def que nos hacen la vida más fácil.Para acabar, os dejo mi proceso para crear macros: Escribo mi combinación de comandos en el cuerpo del documento yverifico que funciona. Escribo cómo quiero que sea mi comando o entorno final y lo comparocon mi combinación de comandos. Traslado la combinación al preámbulo y le doy forma según lasintaxis correspondiente. Extraigo los argumentos y pienso si puedo darle un valor pordefecto a alguno de ellos. Pruebo si funciona. Lo dicho, a escribir macros se aprende escribiendo macros. ¡Dadleduro!ReferenciasLaTeX example: How to create your own commands with newcommandLaTeX/Macros en Wikibooks\newcommand with arguments in LaTeXPlain TeX vs. LaTeX Macros en TeXExchangeLaTeX/Plain TeX en WikibooksList of higher-level LaTeX commands corresponding to TeX commands en TeXExchangeWhat is the difference between \def and \newcommand? en TeXExchange

2025-03-27
User2536

Nuestras propias macrosHoy vamos a salir de mi zona de confort y hablar sobre la creación demacros, es decir, de nuevos comandos y entornos¡Líos denomenclatura a la vista! Dijimos hace mucho que LaTeX es unconjunto de macros para TeX. Luego hemos separado estasmacros en comandos y entornos, pero un entorno no deja de serun conjunto de comandos que afecta de forma local. Llamaremos tambiénmacro a los comandos (y por extensión entornos) quedefinamos nosotros, tal y como se suele hacer en elmundillo.. No soy ninguna experta en esto, pero hay un par deideas que me parece que hay que tener claras a la hora de definircosas en LaTeX. Básicamente voy a contar lo que me hubiera gustado queme contaran cuando empecé con esto, más que nada para no copiar deStackOverflow a ciegas.Lo primero y más importante que tenemos que saber a la hora de jugarcon las macros en LaTeX es que tenemos dos opcionesPara ser sinceros también está \providecommand, quecrea el comando si no existe y si no ignora la definición, pero notiene un primopara los entornos.: Crear un entorno o comando desde cero. Así conseguimos que LaTeXhaga algo que no hacía o guardamos un conjunto de órdenes que usamosa menudo en una macro con el objetivo escribir menos. La palabraclave para esto es new. Pisar un entorno o comando existente. En este caso la idea esmodificar el comportamiento de cierto comando o entorno a nuestrogusto. Se conoce como renew. El siguiente concepto en orden de importancia es que podemos(re)definir comandos en cualquier parte del documento, pero para tenertodo perfectamente organizado es preferible hacerlo en el preámbulo.Veamos entonces como crear comandos y entornos nuevos y modificar losexistentes. Voy a intentar que todos los ejemplos resuelvanproblemas reales, que no sean de juguete.Escribir comandosHan ido apareciendo comandos nuevosCuando aprendimos a escribir ecuaciones vimos

2025-04-22
User2812

TeXstudio VS TeXShop TeXstudio is a powerful, feature-rich LaTeX editor that offers extensive customization and support for advanced users, making it suitable for complex document preparation. In contrast, TeXShop provides a simpler, more user-friendly experience tailored for macOS users, ideal for smaller projects and those new to LaTeX. TeXstudio Pros: Feature-rich with extensive customization options Cross-platform compatibility Strong community support and plugins Integrated version control Advanced code completion and macros Cons: Can be overwhelming for beginners Requires some configuration to optimize Heavy for lower-end systems TeXShop Pros: Simple and user-friendly interface Optimized for macOS users Integrated PDF viewer and syncing Good for small to medium-sized projects Lightweight and easy to set up Cons: Limited to macOS Fewer advanced features compared to alternatives Not suitable for larger projects Compare TeXstudio Compare Gummi and TeXstudio and decide which is most suitable for you. Compare Kile and TeXstudio and decide which is most suitable for you. Compare TeX Live and TeXstudio and decide which is most suitable for you. Compare TeXmacs and TeXstudio and decide which is most suitable for you. Compare Texmaker and TeXstudio and decide which is most suitable for you. Compare TeXnicCenter and TeXstudio and decide which is most suitable for you. Compare TeXworks and TeXstudio and decide which is most suitable for you. Compare VerbTeX LaTeX Editor and TeXstudio and decide which is most suitable for you. Compare Overleaf and TeXstudio and decide which is most suitable for you.

2025-04-12
User3344

Begin , whichallows me to allows me to autocomplete the parts of LaTeX that I don’t want tospend time typing but use often. For instance, in the TeX below, snippets meansI only have to type align* once. \begin{align*} \pi(\theta | x) = \frac{\pi(\theta) p(x | \theta)} {\int \pi(\theta) p(x | \theta) d\theta}\end{align*}And should I need to change align* to just align, I only have toedit this in one of the parens instead of in both lines.To use vim plugins (after installing), you just need to add the github page to your .vimrc file, e.g., forUltisnips, add the line Plugin 'SirVer/ultisnips'and execute :PluginInstall while in command mode in vim.TeX skeletonFor writing quick notes, I have a TeX skeleton file that always loads when Istart a new vim document, i.e., when executing vim notes.tex in thecommand line, a fully-functional tex skeleton with all the packages I normally use and font styles areautomatically loaded. E.g., a version of the following: \documentclass[11pt]{article}\usepackage{amsmath, amssymb, amsthm, bbm}\usepackage{booktabs, fancyhdr, verbatim, graphicx}\title{title}\author{Diana Cai}\begin{document}\maketitle\end{document}subfilesFor longer documents, I use the subfiles package extensively.This allows me to split a document into smaller files, which can then beindividually compiled into its own document. Subfiles inherit the packages, etc.,that are defined in the main file in which the subfiles are inserted.The advantage of using subfiles is that youcan just edit the subfile you’re currently focusing on, which is much fasterthan compiling the entire document (especially one with many images and references).This also helps with reducing the number of git conflicts one encounters whencollaborating on a document.macrosI have a set of macros that I commonly use that are imported when I load a .texdocument. For writing papers, I’ll include a separate macros.tex file with allof my macro definitions that I reuse often. Some example macros I’ve defined: \reals for \mathbb{R} \E for \mathbb{E} \iid for \stackrel{\mathrm{iid}}{\sim} \convas for \stackrel{\mathrm{a.s.}}{\longrightarrow}Also super convenient if you’re defining a variable that is always bold if, forinstance, that variable is a vector.My collaborators and I often have a commenting file we use to add various comments (in different colors too!) in the margins, in the text, or highlighting certain regions of the text.An alternative is to use a LaTeX commenting packageand then define custom commands controlling how the comments appear in the text..vimrcYou can check out my .vimrc file on github to see how I set up keybindings, plugins, andmy .tex skeleton file.

2025-04-18

Add Comment